Abstract
The most highly conserved structures of group II introns are the helical domains V and VI near the 3'splice site. Within this region of each of the four introns in the wheat mitochondrial nad7 gene encoding NADH dehydrogenase subunit 7, there are A-C mispairs. To determine whether C-to-U type RNA editing restores conventional A-U pairing, we sequenced RT-PCR products from partially-spliced nad7 template RNA and gel-fractionated, excised intron RNA. We examined transcripts from germinating wheat embryos and seedlings because these two stages of development show pronounced differences in steady state levels of nad7 intronic RNAs. We observed editing at only two of the six predicted sites, and they were located at homologous positions within domain V of the third and fourth introns. A third site was found to be edited within the unmodelled domain VI loop of the fourth intron. Similar patterns of RNA editing were seen in wheat embryos and seedlings. These observations, and the presence of other non-conventional base pairs particularly within domain V of plant mitochondrial introns, indicate weaker helical core structure than in ribozymic group II introns. Moreover, the incompleteness or absence of editing in wheat nad7 excised intron RNA suggests that, although editing may contribute to splicing efficiency, it is not essential for splicing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.