Abstract

Alfalfa mosaic virus (AMV) coat protein and tobacco streak virus (TSV) coat protein bind specifically to the 3′ untranslated regions of the viral RNAs and are required with the genomic RNAs to initiate virus replication. A combination of nucleotide substitutions, hydroxyl radical footprinting, and ethylation and chemical modification interference analysis has been used to define the RNA determinants important for the specific binding of the 3′-terminal 39 nucleotides of AMV RNA 3/4 (AMV 843–881) to an amino-terminal coat protein peptide (CP26). The results demonstrate that potential phosphate and base-specific contacts as well as ribose moieties protected upon peptide binding cluster in lower hairpin stems and flanking AUGC sequences of the viral RNA, without direct involvement of loop nucleotides. Nucleotides identified in the modification-interference analyses as important for RNA-protein interactions are highly conserved among AMV and the ilarvirus RNAs. This RNA sequence homology, coupled with the recent identification of an RNA binding consensus sequence for AMV and ilarvirus coat proteins, provides a framework for understanding the functional equivalence of AMV and TSV coat proteins in binding RNA and activating virus replication and may explain why heterologous AMV and ilarvirus coat protein-RNA mixtures are infectious.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.