Abstract

Advancing biomedical studies necessitates the development of cutting-edge technologies for the rapid extraction of nucleic acid. We characterized an RNA capture pin (RCP) tool that is non-destructive to the sample and enables rapid purification and enrichment of mRNA for subsequent genetic analysis. At the core of this technology is a pin (200µm × 3cm) functionalized with dT15 capture sequences that hybridize to mRNA within 2min of insertion in the specimen. Two methods for immobilizing the oligos on the surface of the RCPs were investigated: gold-thiol and biotin-streptavidin. The RNA capture efficiency of the RCPs was assessed using a radish plant. The average reverse transcription-quantitative polymerase chain reaction (RT-qPCR) cycle amplification values were 19.93 and 24.84 for gold- and streptavidin-coated pins, respectively. The amount of RNA present on the surface of the probes was measured using the Agilent 2100 Bioanalyzer. RNA sequencing was performed to determine the mRNA selectivity of the RNA capture pin. Gene read count analysis confirmed that the RNA purified via the gold-plated RCPs contained 70% messenger RNA, 10% ribosomal RNA, and 20% non-coding RNA. The long-term stability of the bond between the dT15 oligos and the surface of the RCPs was assessed over 4months. A significant decrease in the dT15 surface coverage of the streptavidin-coated RCPs was observed after 2weeks of storage at 4°C. The gold-thiol RNA capture pins exhibited a retention rate of 40% of the oligos after 4months of storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.