Abstract

Base-pairing interactions between nucleic acids mediate target recognition in many biological processes. We developed a super-resolution imaging and modeling platform that enabled the in vivo determination of base pairing-mediated target recognition kinetics. We examined a stress-induced bacterial small RNA, SgrS, which induces the degradation of target messenger RNAs (mRNAs). SgrS binds to a primary target mRNA in a reversible and dynamic fashion, and formation of SgrS-mRNA complexes is rate-limiting, dictating the overall regulation efficiency in vivo. Examination of a secondary target indicated that differences in the target search kinetics contribute to setting the regulation priority among different target mRNAs. This super-resolution imaging and analysis approach provides a conceptual framework that can be generalized to other small RNA systems and other target search processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.