Abstract
Contact inhibition adjusts organ size to the proper size and ensures the cultured cells growing to a monolayer. By regulating the downstream coordinator YAP, the evolutionarily conserved Hippo transduction pathway attunes cell growth and death in response to cell contact inhibition, polarity, self-renewal, and differentiation. Dysregulation of this pathway is involved in various diseases such as cancer. RNA-binding protein QKI regulates cell proliferation, metabolism, division, and immunity in various cancer models, but its role in cancer cell contact inhibition remains unclear. In this study, we aimed to clarify the relationship between QKI and YAP, and the role of their interaction in cell contact inhibition. We found a lower QKI expression level in sparse condition, whereas a higher expression level in confluent condition by western blot analysis and immunofluorescence assay. QKI knockdown elevated cell proliferation and invasion both in vitro and in vivo. Strikingly, the results of CCK-8 assay, colony formation assay, and transwell assay showed that the phenomenon was in accord with the expression level of pYAP and reverse with YAP. Higher levels of Wnt3a and β-catenin were also found in xenografts of QKI-knockdown clear cell renal cell carcinoma (ccRCC) CAKI-1 cells by western blot analysis and immumohistochemical staining. Finally, a positive correlation between QKI and pYAP was found in clinical specimens by immunohistochemistry. Thus, as a negative regulator of YAP, QKI attuned the cell contact inhibition, leading to inhibition of cancer cell proliferation and invasion through Wnt and GPCR pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.