Abstract
Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia-induced autophagy in renal proximal tubular cells-2 (HK-2). HK-2 cells showed upregulated expressions of HuR and autophagy-related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin-RNA-mediated loss of HuR function in HK-2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU-rich element at 3'UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK-2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.