Abstract
The binding of naturally occurring methylxanthines such as theophylline, theobromine and caffeine to nucleic acids are reckoned to be pivotal as they are able to modulate the cellular activities. We explore the interaction of yeast RNA binding efficacy of the above xanthine derivatives by using UV absorption differential spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Both the analyses show discrimination in their binding affinity to RNA. The differential UV-spectrum at P/D 3.3 reveals the greater RNA binding activity for theophylline (85 ± 5%), whereas moderate and comparatively less binding activity for theobromine (45 ± 5%) and caffeine (30 ± 5%) and the binding activity was found to depend on concentration of the drugs. In FTIR analysis we observed changes in the amino group (NH) of RNA complexed by drugs, where the NH band is found to become very broad, indicating hydrogen bonding (H-bonding) with theophylline (3343.4 cm−1), theobromine (3379.8 cm− 1) and caffeine (3343 cm−1) as compared to the free RNA (3341.6 cm−1). Furthermore in RNA-theophylline complex, it is observed that the carbonyl (C=O) vibration frequency (υC=O) of both drug (υC=O=1718, 1666 cm−1) as well as RNA (υC=O=1699, 1658 cm−1) disappeared and a new vibration band appeared around 1703 cm−1, indicating that the C=O and NH groups of drug and RNA are effectively involved in H-bonding. Whereas in RNA-theo- bromine and RNA-caffeine complexes, we found very little changes in C=O frequency and only broadening of the NH band of RNA due to complexation is observed in these groups. The changes in the vibrations of G-C/A-U bands and other bending frequencies are discussed. Thus the discrimination in the binding affinity of methylxanthines with RNA molecule shows that strong RNA binding drugs like theophylline can selectively be delivered to RNA targets of microbial pathogens having the mechanism of RNA catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.