Abstract

Cucumber leaf spot virus (CLSV) is an aureusvirus (family Tombusviridae) that has a positive-sense RNA genome encoding five proteins. During infections, CLSV transcribes two subgenomic (sg) mRNAs and the larger of the two, sg mRNA1, encodes coat protein. Here, the viral RNA sequences and structures that regulate transcription and translation of CLSV sg mRNA1 were investigated. A medium-range RNA-RNA interaction in the CLSV genome, spanning 148 nucleotides, was found to be required for the efficient transcription of sg mRNA1. Further analysis indicated that the structure formed by this interaction acted as an attenuation signal required for transcription of sg mRNA1 via a premature termination mechanism. Translation of coat protein from sg mRNA1 was determined to be facilitated by a 5'-terminal stem-loop structure in the message that resembled a tRNA anticodon stem-loop. The results from mutational analysis indicated that the 5'-terminal stem-loop mediated efficient base pairing with a 3'-cap-independent translational enhancer at the 3' end of the message, leading to efficient translation of coat protein from sg mRNA1. Comparison of the regulatory RNA structures for sg mRNA1 of CLSV to those used by the closely related tombusviruses and certain cellular RNAs revealed interesting differences and similarities that provide evolutionary and mechanistic insights into RNA-based regulatory strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.