Abstract

Prostate cancer (CaP) is the most common malignant neoplasm of the urinary tract. The current recommendations for CaP diagnosis rely on the prostate-specific antigen levels and a digital rectal examination for anatomical abnormalities. However, these diagnostic tools are not highly sensitive. In particular, prostate-specific antigen has a low positive predictive value (approximately 30%). Thus, there is a need to develop biomarkers to improve the early clinical detection of CaP. Several novel technologies enable the identification of biomarkers from diverse sources, including the urine, serum, and prostate tissues. Furthermore, advances in genomic techniques have enabled the analysis of novel biomarkers, such as deoxyribonucleic acids (DNAs), ribonucleic acids (RNAs), proteins, and circulating tumor cells. Previous studies have demonstrated that RNAs are potential diagnostic biomarkers for various cancers using high-throughput sequencing analysis. The sensitivity and specificity of RNA biomarkers are higher than those of protein biomarkers. Polymerase chain reaction enables the amplification of trace levels of RNAs with high sensitivity and specificity. RNA biomarkers provide dynamic insights into cellular states and regulatory processes when compared with DNA biomarkers. Additionally, multiple copies of various RNAs in a cell provide more information than DNA. The levels of specific RNAs in CaP tissues are upregulated when compared with those in non-cancerous tissues. Additionally, RNAs can be easily isolated from various body fluids. Thus, RNAs are potential non-invasive biomarkers for CaP. Moreover, the analysis of RNA levels adjusted for each stage of CaP enables the determination of prognostic individualized therapy for aggressive or progressive CaP. This review focused on the diagnostic and prognostic values of RNAs for CaP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.