Abstract

The N-methyl d-aspartate (NMDA) class of ionotropic glutamate receptors plays important roles in learning and memory as well as in a number of neurological disorders including Huntington's disease and cerebral ischemia. Here, we describe the isolation and characterization of a 2' F-modified RNA aptamers directed against GluN2A-containing NMDA receptors. By adding a negative selection step toward the closely related AMPA and kainate receptors, the RNA aptamers specifically recognize NMDA receptors with dissociation constants in the nanomolar range. Electrophysiological characterization of these aptamers using rapid perfusion in outside-out patches reveals that they selectively inhibit the GluN2A containing subtype of NMDA receptors with little effect on the AMPA and kainate receptor subtypes. We also demonstrate that this RNA aptamer significantly reduces neurotoxicity in an in vitro model of cerebral ischemia. Given that the RNA based antagonist can be readily modified, it can be used as a tool in targeted drug delivery or for imaging purposes in addition to having the potential use as a therapeutic intervention in disorders involving glutamate receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.