Abstract

The systematic evolution of ligands by exponential enrichment (SELEX) technique is a combinatorial library approach in which DNA or RNA molecules (aptamers) are selected by their ability to bind their protein targets with high affinity and specificity, comparable to that of monoclonal antibodies. In contrast to antibodies conventionally selected in animals, aptamers are generated by an in vitro selection process, and can be directed against almost every target, including antigens like toxins or nonimmunogenic targets, against which conventional antibodies cannot be raised. Aptamers are ideal candidates for cytomics, as they can be attached to fluorescent reporters or nanoparticles in order to study biological function by fluorescence microscopy, by flow cytometry, or to quantify the concentration of their target in biological fluids or cells using ELISA, RIA, and Western blot assays. We demonstrate the in vitro selection of anti-kinin B1 receptor aptamers that could be used to determine B1 receptor expression during inflammation processes. These aptamers specifically recognize their target in a Northern-Western blot assay, and bind to their target protein whenever they are exposed in the membrane. Currently, aptamers are linked to fluorescent reporters. We discuss here the present status and future directions concerning the use of the SELEX technique in cytomics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.