Abstract

Leaf protoplasts from the Arlington line of cowpea ( Vigna unguiculata) support only a limited increase of cowpea mosaic virus strain SB (CPMV-SB), whereas cowpea severe mosaic virus, another member of the comovirus group, replicates efficiently in Arlington cowpea protoplasts. CPMV-SB replicates efficiently in protoplasts of cowpea line Blackeye 5. Some characteristics of the virus-specific resistance of Arlington protoplasts to CPMV-SB are reported. Differences between progeny CPMV-SB from Arlington and Blackeye 5 protoplasts were not detected. Inoculation with CPMV-SB RNA, rather than virions, did not make Arlington protoplasts fully susceptible. These results favor, for likely involvement in the CPMV-SB restriction phenomenon, events in the virus life cycle that occur after exposure of virion RNA to the cytoplasm and before assembly of particles is completed. The accumulation of CPMV-SB RNAs of both polarities was found to be depressed in inoculated Arlington protoplasts. However, (+)RNA (virion RNA polarity) accumulated to no lesser extent, per unit of (−)RNA, in Arlington protoplasts than in, Blackeye 5 protoplasts. Capsid antigen accumulation, per unit of (+)RNA, was reduced in Arlington protoplasts as compared to Blackeye 5 protoplasts. A working hypothesis consistent with the above and other observations is that Arlington protoplasts have an inhibitory substance that interferes with the production or/and function of CPMV-SB specified proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.