Abstract

BackgroundThe understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule’s sequence. The prediction of tertiary structures of complex RNAs is still a challenging task.ResultsUsing the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence.ConclusionThis work, for the first time to our knowledge, demonstrates the importance of the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These observations prompt investigations into a new direction of research for checking 3D structure “foldability” or “predictability” of related RNA sequences to obtain accurate predictions. To support new research in this area, we provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identifying limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native computational RNA 3D models.

Highlights

  • The understanding of the importance of Ribonucleic acid (RNA) has dramatically changed over recent years

  • EvoClustRNA workflow In this work, we propose a new methodology together with ready-to-use implementation (EvoClustRNA), that can contribute to the improvement of RNA 3D structure prediction

  • The EvoClustRNA method takes as input (i) an alignment file, (ii) a folder with models generated for homologous sequence, and (iii) a file that maps sequence names from the alignment with filenames of models

Read more

Summary

Introduction

The understanding of the importance of RNA has dramatically changed over recent years. Ribonucleic acid (RNA) is one of the key types of molecules found in living cells. It is involved in a number of highly important biological processes, as the carrier of the genetic information and serving catalytic, scaffolding and structural functions, and more [1]. Recent tests [10] have demonstrated significant progress Encouraging, this progress still leaves the field without methods that can reliably predict RNA tertiary structure in a consistent way. An accurate RNA sequence alignment can be used to predict secondary structure, the Watson-Crick base pairing pattern for the RNA, a key precedent for subsequently modeling RNA tertiary structure. According to the CompaRNA [12] continuous benchmarking platform, methods that exploit RNA alignments, such as PETfold [13] outperform single sequence predictive methods for RNA secondary structure

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call