Abstract

Seven plasmid-mediated 16S rRNA methyltransferases (MTases), RmtA, RmtB, RmtC, RmtD, RmtE, ArmA, and NpmA, conferring aminoglycoside resistance have so far been found in Gram-negative pathogenic microorganisms. In the present study, by performing an RNase protection assay, primer extension, and HPLC, we confirmed that RmtC indeed methylates at the N7 position of nucleotide G1405 in 16S rRNA as found in ArmA and RmtB. RmtC has an MTase activity specific for the bacterial 30S ribosomal subunit consisting of 16S rRNA and several ribosomal proteins, but not for the naked 16S rRNA, as seen in ArmA, RmtB, and NpmA. All seven 16S rRNA MTases have been found exclusively in Gram-negative bacilli to date, and no plasmid-mediated 16S rRNA MTase has been reported in Gram-positive pathogenic microorganisms. Thus, we checked whether or not the RmtC could function in Gram-positive bacilli, and found that RmtC could indeed confer high-level resistance to gentamicin and kanamycin in Bacillus subtilis and Staphylococcus aureus. 16S rRNA MTases seemed to be functional to some extent in any bacterial species, regardless of the provenance of the 16S rRNA MTase gene responsible for aminoglycoside resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.