Abstract
The conventional back propagation (BP) algorithm is generally known for some disadvantages, such as slow training, easy to getting trapped into local minima and being sensitive to the initial weights and bias. This paper introduced a new class of efficient second order conjugate gradient (CG) for training BP called Rivaie, Mustafa, Ismail and Leong (RMIL)/AG. The RMIL uses the value of adaptive gain parameter in the activation function to modify the gradient based search direction. The efficiency of the proposed method is verified by means of simulation on four classification problems. The results show that the computational efficiency of the proposed method was better than the conventional BP algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.