Abstract

The RM1 model for the lanthanides is parameterized for complexes of the trications of lanthanum, cerium, and praseodymium. The semiempirical quantum chemical model core stands for the [Xe]4fn electronic configuration, with n =0,1,2 for La(III), Ce(III), and Pr(III), respectively. In addition, the valence shell is described by three electrons in a set of 5d, 6s, and 6p orbitals. Results indicate that the present model is more accurate than the previous sparkle models, although these are still very good methods provided the ligands only possess oxygen or nitrogen atoms directly coordinated to the lanthanide ion. For all other different types of coordination, the present RM1 model for the lanthanides is much superior and must definitely be used. Overall, the accuracy of the model is of the order of 0.07Å for La(III) and Pr(III), and 0.08Å for Ce(III) for lanthanide-ligand atom distances which lie mostly around the 2.3Å to 2.6Å interval, implying an error around 3% only.

Highlights

  • Lanthanum complexes find their usage as catalysts, for example, in the transesterification of triglycerides to monoesters [1], important in the making of biodiesel fuel, in the synthesis of novel antioxidants with high superoxide scavenging activity [2], in asymmetric epoxidation reactions [3], in P4 activation by lanthanum naphthalene complex [4], etc

  • In order to be able to address all types of bonds between the central trivalent lanthanide ion and its ligands, we introduced in 2013 a new and more perfected model, we called the RM1 model for the lanthanides, and presented parameters for Eu(III), Gd(III), Tb(III) [42], Dy(III), Ho(III), and Er(III) [43]

  • The overall advantage of the RM1 model for the lanthanides presented in this article is that it can perform a full geometry optimization on a complex such as the tetramer of praseodymium, [Pr4Cl10(OH)2(thiazole)8(H2O)2], with relative ease; something that would be exceedingly difficult for an ab initio type calculation

Read more

Summary

Introduction

Lanthanum complexes find their usage as catalysts, for example, in the transesterification of triglycerides to monoesters [1], important in the making of biodiesel fuel, in the synthesis of novel antioxidants with high superoxide scavenging activity [2], in asymmetric epoxidation reactions [3], in P4 activation by lanthanum naphthalene complex [4], etc. Cerium(III) complexes display low toxicity when compared to other lanthanide ions and are, for example, of interest in the design of new drugs targeting DNA [9]. They, may be used as catalysts, for example in the catalytic cleavage of phosphate esters, an important reaction which mimetizes the hydrolytic cleavage of DNA [10].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.