Abstract

We consider a class of evolution differential inclusions defining the so-called stop operator arising in elastoplasticity, ferromagnetism, and phase transitions. These differential inclusions depend on a constraint which is represented by a convex set that is called the characteristic set. For $\rm BV$ (bounded variation) data we compare different notions of $\rm BV$ solutions and study how the continuity properties of the solution operators are related to the characteristic set. In the finite-dimensional case we also give a geometric characterization of the cases when these kinds of solutions coincide for left continuous inputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.