Abstract

The aim of this paper is to develop efficient online adaptive algorithms for the generalized eigen-decomposition problem which arises in a variety of modern signal processing applications. First, we reinterpret the generalized eigen-decomposition problem as an unconstrained minimization problem by constructing a novel cost function. Second, by applying projection approximation method and recursive least-square (RLS) technique to the cost function, a parallel adaptive algorithm for a basis for the r-dimensional (r>0) dominant generalized eigen-subspace and a sequential algorithm based on deflation technique for the first r-dominant generalized eigenvectors are derived. These algorithms can be viewed as counterparts of the extended projection approximation subspace tracking (PAST) and PASTd algorithms, respectively. Furthermore, we modify the parallel algorithm to explicitly estimate the first r-generalized eigenvectors in parallel, not the generalized eigen-subspace. More important, the modified parallel algorithm can be used to extract multiple generalized eigenvectors of two nonstationary sequences, while the proposed sequential algorithm lacks this ability because of slow convergence of minor generalized eigenvectors due to error propagation of the deflation technique. Third, following convergence analysis methods for PAST and PASTd, we prove the asymptotic convergence properties of the proposed algorithms. Finally, computer simulations are performed to investigate the accuracy and the speed advantages of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.