Abstract

Chemically derived auto-combustion technique is employed to synthesize the Zn0.95−xFe0.05AlxO (x=0, 0.03, 0.05, 0.07) nano-crystallites. The salient similarities between variations in lattice parameters, crystallite size, morphology, electrical resistivity and saturation magnetization designated a strong association between these properties. X-ray diffraction studies of all compositions revealed the phase pure wurtzite crystal structure with space group P63mc. The lattice parameters and crystallite size are changed with doping of Al attributed to the diversity in the size of ionic radii. Scanning electron micrographs revealed that Al doping affects the size and shape of grains in synthesized compositions. Temperature dependent electrical resistivity shows a decreased trend with the rise of temperature, confirming the semiconducting nature of compositions. The lower resistivity and enhanced saturation magnetization values in Al doped compositions correspond to the increase in density of carriers. Carrier mediated RKKY interactions are found to enhance magnetization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.