Abstract

We argue through a combination of slave-boson mean-field theory and the Bethe ansatz that the ground state of closely spaced double quantum dots in parallel coupled to a single effective channel are Fermi liquids. We do so by studying the dots' conductance, impurity entropy, and spin correlation. In particular, we find that the zero-temperature conductance is characterized by the Friedel sum rule, a hallmark of Fermi-liquid physics, and that the impurity entropy vanishes in the limit of zero temperature, indicating that the ground state is a singlet. This conclusion is in opposition to a number of numerical renormalization-group studies. We suggest a possible reason for the discrepancy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.