Abstract

Abstract With the worldwide trend of low oil prices, high maturity of oil fields, excessive cost of horizontal and fracking technologies, and necessity for green drilling applications, radial jet drilling (RJD) technology can be a cost effective and environmentally-friendly alternative. RJD is an unconventional drilling technique that utilizes coiled tubing conveyed tools and the energy of high velocity fluid jets to drill laterals inside the reservoir. In recent years, rapid advances in high pressure water jet technology has tremendously increased its application in oil and gas industry not only in drilling operations to improve drilling rate and reduce drilling cost, but also in production to maximize hydrocarbon recovery. In addition, RJD can be used to bypass near wellbore damage, direct reservoir treatments/injections, improve water disposal and re-injection rates, and assist in steam or CO2 treatments. This paper highlights the theoretical basis, technological advancement, procedures, applications, and challenges of high pressure water jets. Several worldwide case studies are discussed to evaluate the success, results, pros, and cons of RJD. The results show that nearly an average of four to five fold production increase can be obtained. The present paper clearly shows that radial jet drilling is a viable and attractive alternative in marginal and small reservoirs that still have significant oil in place to capture the benefits of horizontal drilling/fracking and to improve productivity from both new wells and/or workover wells that cannot be produced with the existing expensive conventional completions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.