Abstract

Modeling in ice-covered rivers is limited due to added computational complexity, specifically challenges with the collection of field calibration data. Using River2D, a 2-dimensional hydrodynamic modeling software, this study simulates depth-averaged velocity and shear stress distributions under ice cover and in open-water conditions during varying flow conditions in a small, shallow riffle-pool sequence. The results demonstrated differences in velocity distribution throughout the channel and increases in discharge were found to impact the velocity magnitude under ice cover, while the spatial distribution remained consistent. A recirculating eddy found along the pool’s left bank was exacerbated under ice cover, with potential implications for silver shiner habitat suitability. Bed shear stress magnitude did not vary significantly between ice and open water, although the spatial distribution differed notably. Model validation demonstrated success in simulating water depth and velocities, and the shear stress was estimated within a reasonable margin. Using hydrodynamic models provides valuable insight into seasonal changes in velocities and shear stress when ice is present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.