Abstract

Bank retreat occurs by a combination of lateral erosion by the flow and mass failure under gravity. A new analysis of bank erosion and failure is developed, using a critical shear‐stress concept to account for lateral erosion and a slope stability criterion for mass failure. In this paper, we apply the analysis to two problems of bank retreat often encountered by practicing engineers dealing with alluvial channels. The first application is to the prediction of degradation downstream of a dam for the case in which bed lowering causes bank instability. We show that rapid bank retreat can occur once the threshold height for mass failure of the banks is reached. This supplies sediment to the flow, tends to limit the depth of degradation, and drives complex response downstream. The second application is to the modeling of flow in channel bends and the prediction of the equilibrium cross section. We show that scour depth at the outer bank may be limited by the critical bank height. If scouring causes the outer ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.