Abstract

The breakup of the winter ice cover is a brief but seminal event in the regime of northern rivers, and in the life cycle of river and basin ecosystems. Breakup ice jams can cause extreme flood events, with major impacts on riverside communities, aquatic life, infrastructure, navigation, and hydropower generation. Related concerns are underscored by the issue of climate change and the faster warming that is predicted for northern parts of the globe. Advances in knowledge of breakup processes and related topics, achieved over the past 15 years or so, are outlined. They pertain to breakup initiation and ice-jam formation, ice-jam properties and numerical modelling of ice jams, waves generated by ice-jam releases, forecasting and mitigation methods, sediment transport, ecological aspects, and climate-change impacts. Major knowledge gaps are associated with the dynamic interaction of moving ice with the flow and with the stationary ice cover. Increasing computing capacity and remote sensing sophistication are expected to provide effective means for bridging these gaps. Key words: climate, ecology, forecasting, ice jam, modelling, onset, sediment, wave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call