Abstract

A numerical study of precipitation and river flow from November 1994 to May 1995 at two California basins is presented. The Hopland watershed of the Russian River in the northern California Coastal Range and the headwater of the North Fork American River in the northern Sierra Nevada were selected to investigate the hydroclimate, snow budget, and streamflow at different elevations. Simulated precipitation and streamflow at the Hopland basin closely approximated observed values. An intercomparison between the semidistributed TOPMODEL and two versions of the lumped Sacramento model for the severe storm event of January 1995 indicates that both types of models predicted a similar response of river outflows from this basin, with the exception that TOPMODEL predicted a faster recession of river flow with less base flow after precipitation ended. Precipitation in this low-elevation watershed was predominantly in the form of rain, causing a fast streamflow response. The high-elevation Sierra Nevada watershed received most of its precipitation as snowfall. As a result, the frozen water held in surface storage delayed runoff and streamflow. Application of a simple elevation-dependent snowfall and rainfall partitioning scheme showed the significance of finescale terrain variation in the surface hydrology at high-elevation watersheds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call