Abstract
This paper demonstrates the application of different artificial neural network (ANN) techniques for the estimation of monthly streamflows. In the first part of the study, three different ANN techniques, namely, feed forward neural networks (FFNN), generalized regression neural networks (GRNN) and radial basis ANN (RBF) are used in one-month ahead streamflow forecasting and the results are evaluated. Monthly flow data from two stations, Gerdelli Station on Canakdere River and Isakoy Station on Goksudere River, in the Eastern Black Sea region of Turkey are used in the study. Based on the results, the GRNN was found to be better than the other ANN techniques in monthly flow forecasting. The effect of periodicity on the model's forecasting performance was also investigated. In the second part of the study, the performance of the ANN techniques was tested for river flow estimation using data from the nearby river.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.