Abstract
Near-real-time flood maps are essential to organize and coordinate emergency services' response actions during flooding events. Thanks to its capacity to acquire synoptic and detailed data during day and night, and in all weather conditions, Synthetic Aperture Radar (SAR) satellite remote sensing is considered one of the best tools for the acquisition of flood mapping information. However, specific factors contributing to SAR backscatter in urban environments, such as shadow and layover effects, and the presence of water surface–like radar response areas, complicate the detection of flood water pixels. This paper describes an approach for near-real-time flood mapping in urban and rural areas. The innovative aspect of the approach is its reliance on the combined use of very-high-resolution SAR satellite imagery (C-band, HH polarization) and hydraulic data, specifically flood return period data estimated for each point of the floodplain. This approach was tested and evaluated using two case studies of the 2011 Richelieu River flood (Canada) observed by the very-high-resolution RADARSAT-2 sensor. In both case studies, the algorithm proved capable of detecting flooding in urban areas with good accuracy, identifying approximately 87% of flooded pixels correctly. The associated false negative and false positive rates are approximately 14%. In rural areas, 97% of flooded pixels were correctly identified, with false negative rates close to 3% and false positive rates between 3% and 35%. These results highlight the capacity of flood return period data to overcome limitations associated with SAR-based flood detection in urban environments, and the relevance of their use in combination with SAR C-band imagery for precise flood extent mapping in urban and rural environments in a crisis management context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.