Abstract

Problem statement: Embankment failure and riverbank erosion are common problem in Bangladesh. Almost every year earthen embankments and riverbanks are facing problems like erosion, breaching or retirements. Among many reasons the major causes are considered due to the use of geotechnically unstable materials, improper method of construction, seepage and sliding. In this study the problem is considered geotechnical point of view where the geotechnical properties of failed Jamuna river embankment material and Padma riverbank material were investigated. Moreover, stability analysis technique of embankment has been reviewed through a case study of Manu river embankement. Approach: Sample materials were collected during field investigation and tested at laboratory according to Japanese Industrial Standard (JIS). Limit equilibrium stability analysis and steady state seepage analysis was conducted for Manu river embankment to review the existing design procedure of embankment. Results: Study results reveal that the soil of Jamuna river embankment is not well graded sand and the permeability is found minimum of 1.29×10-5 cm sec−1 (at w = 24%) which increases rapidly in submerge condition. The maximum strength is found 51.8 kN m−2 which is not preferable as embankment material. Moreover, the slope is not well protected that makes the embankment vulnerable to erosion. In contrast, the soil of Padma riverbank contains mostly sand with 25% clay content. Both permeability and strength of bank material decrease rapidly with the increase of water content. Nevertheless, tension crack and toe erosion also accelerate the mass failure mechanism of riverbank. From case study the Factor of Safety (FS) is found overestimated of about 22-24% in stability analysis of embankment in usual practice. Conclusion: Embankment soil needs to be improved geotechnically to minimize mass failure. Geo-bags, cement composites with reinforcement could be used for slope protection. To obtain reliable factor of safety seepage analysis is recommended in designing stable embankment.

Highlights

  • Earthen embankments in Bangladesh are beset with construction results in poor-quality earthworks with the multi-facetted problems

  • This study aimed (i) To investigate the physical and mechanical properties of the embankment material of Jamuna river located at Sirajganj district of Bangladesh, (ii) To determine the geotechnical properties of Padma riverbank material and clarify the bank-failure mechanism in Charghat area located in Rajshahi district of Bangladesh, (iii) To evaluate the existing design methodology for embankment stability analysis through a case study

  • It is predicted that the permeability is increased rapidly in submerge condition of the soil

Read more

Summary

Introduction

Earthen embankments in Bangladesh are beset with construction results in poor-quality earthworks with the multi-facetted problems. Earthen Among many reasons, the improper design embankments in Bangladesh are facing problems like methodology and construction procedure is prime and erosion, breaching in every year. Embankment failure and riverbank erosion problems in Bangladesh have been looked with respect to the factors regarding stability and geotechnical characteristics. This study aimed (i) To investigate the physical and mechanical properties of the embankment material of Jamuna river located at Sirajganj district of Bangladesh, (ii) To determine the geotechnical properties of Padma riverbank material and clarify the bank-failure mechanism in Charghat area located in Rajshahi district of Bangladesh, (iii) To evaluate the existing design methodology for embankment stability analysis through a case study

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call