Abstract

The coastal zones on continental shelves are the main channels for the distribution of fluvial-sourced suspended sediments (SSs). In the current research, the monthly average amount of SS draining into the Caribbean Sea from the Magdalena River in northern Colombia was analyzed to detect nanoparticle (NPs) containing potential hazardous elements (PHEs). The ecological authorities of Colombia claimed that the climate change is the key reason behind land erosion and floods occurred in the last years; therefore, an elaborate understanding of NP dynamics between the Magdalena River body and streambed is an essential issue in SS research. In this work, the NP geochemistry of SS in the Magdalena River estuary was studied from the perspective of water quality controls on SS sorting. The morphologies and the structures of NPs (<100 nm) were examined by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and selected area electron diffraction (SAED)/micro-beam diffraction (MBD)/energy dispersive X-ray spectroscopy (EDS) techniques. The average size of NPs was found to be greater than 2 nm and Al, Ti, Fe oxides, and other hazardous elements were also detected in the SS. The obtained data confirmed that these typical categories of NPs caused the occurrence-dependent intensification of a conjugative transmission rate associated with the regulators. The advanced electron beam technique provided a clear insight into SS transportation; therefore, it could be used as an essential instrument for river supervision/dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.