Abstract

Bacterial communities play a critical role in food webs and the biogeochemical cycles of fundamental elements. However, there remains a substantial gap in our knowledge of the anthropogenic impacts on bacterial co-occurrence patterns and ecosystem functions. In this study, we used Illumina high-throughput sequencing to characterize and compare the diversity, composition, co-occurrence patterns, and functional changes in bacterial communities in the Qingliu River under the influence of different types of domestic sewage. Twelve samples had similar dominant phyla, mainly Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes, differing only in the proportions of the microorganisms. However, there was a large difference at the genus level, for example, the relative abundance of the genus Dechloromonas in the school sewage water samples (XXW) was much higher than that in the other samples, the genus Chryseobacterium was the dominant bacteria in the residential sewage water samples (JMW), and there were significant differences between the different samples (P < 0.01). This may indicate that external pollution and environmental induction deeply affect the bacterial community assembly in rivers. Network analysis showed that the river bacterial co-occurrence network has a modular structure (divided into 6 modules), and that the microbial taxonomic units from the same module were involved in the carbon and nitrogen cycle (e.g., the CL500-29 marine group and the genus Pseudomonas) and degradation of organic pollutants and toxic compounds (e.g., the genera Massilia and Exiguobacterium). Functional predictions indicate that the function of ABC transporter was highest in the hospital sewage water samples (YYW), while two-component system was more abundant in the XXW samples. In summary, our research provides a new perspective of community assembly in rivers under the influence of human activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call