Abstract
An accurate determination of the ground condition ahead of a tunnel face is key to stable excavation of tunnels using a Tunnel Boring Machine (TBM). This study verifies the effectiveness of using the Induced Polarization (IP) method along with electrical resistivity for identifying hazardous ground conditions ahead of a tunnel face. The advancement of the TBM toward a fault zone, seawater bearing zone, soil-to-rock transition zone, and mixed-ground zone is artificially modeled in laboratory-scale experiments. The IP and resistivity are assumed to be measured at the tunnel face, whenever the excavation is stopped to assemble one ring of a segmental lining. The measured IP showed completely different trends from the measured resistivity and varies with the type of hazardous zone. As the TBM approached the fault zone, transition zone, and mixed ground, the IP values were observed to be constant, increasing, and fluctuating, respectively. Therefore, a more reliable prediction of the ground condition ahead of a tunnel face can be achieved by using the IP and resistivity methods together. A table that can be used to predict the ground conditions based on the afore-mentioned methods is presented in this paper for use in mechanized tunneling job sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.