Abstract

Large-scale use of the persistent and potent neonicotinoid and fipronil insecticides has raised concerns about risks to ecosystem functions provided by a wide range of species and environments affected by these insecticides. The concept of ecosystem services is widely used in decision making in the context of valuing the service potentials, benefits, and use values that well-functioning ecosystems provide to humans and the biosphere and, as an endpoint (value to be protected), in ecological risk assessment of chemicals. Neonicotinoid insecticides are frequently detected in soil and water and are also found in air, as dust particles during sowing of crops and aerosols during spraying. These environmental media provide essential resources to support biodiversity, but are known to be threatened by long-term or repeated contamination by neonicotinoids and fipronil. We review the state of knowledge regarding the potential impacts of these insecticides on ecosystem functioning and services provided by terrestrial and aquatic ecosystems including soil and freshwater functions, fisheries, biological pest control, and pollination services. Empirical studies examining the specific impacts of neonicotinoids and fipronil to ecosystem services have focused largely on the negative impacts to beneficial insect species (honeybees) and the impact on pollination service of food crops. However, here we document broader evidence of the effects on ecosystem functions regulating soil and water quality, pest control, pollination, ecosystem resilience, and community diversity. In particular, microbes, invertebrates, and fish play critical roles as decomposers, pollinators, consumers, and predators, which collectively maintain healthy communities and ecosystem integrity. Several examples in this review demonstrate evidence of the negative impacts of systemic insecticides on decomposition, nutrient cycling, soil respiration, and invertebrate populations valued by humans. Invertebrates, particularly earthworms that are important for soil processes, wild and domestic insect pollinators which are important for plant and crop production, and several freshwater taxa which are involved in aquatic nutrient cycling, were all found to be highly susceptible to lethal and sublethal effects of neonicotinoids and/or fipronil at environmentally relevant concentrations. By contrast, most microbes and fish do not appear to be as sensitive under normal exposure scenarios, though the effects on fish may be important in certain realms such as combined fish-rice farming systems and through food chain effects. We highlight the economic and cultural concerns around agriculture and aquaculture production and the role these insecticides may have in threatening food security. Overall, we recommend improved sustainable agricultural practices that restrict systemic insecticide use to maintain and support several ecosystem services that humans fundamentally depend on.

Highlights

  • Soil ecosystem services and biodiversityOther papers in this special issue have shown that neonicotinoid insecticides and fipronil are presently used on a very large scale (e.g., Simon-Delso et al 2014, this issue) and are highly persistent, and repeated application can lead to buildup of environmental concentrations in soils

  • Given that many soil ecosystem services are dependent on soil organisms, that neonicotinoid insecticides often occur and can persist in soils, and that their residues pose a risk of harm to several key soil invertebrates, neonicotinoids have the potential to cause adverse effects on ecosystem services of soils

  • Earthworms could be categorized as such, and since adverse effects on earthworms have been reported at realistic concentrations of neonicotinoids in soils and leaf litter, this provides reasonable evidence that some soil ecosystem services can be impaired by the use of neonicotinoid insecticides

Read more

Summary

Introduction

Other papers in this special issue have shown that neonicotinoid insecticides and fipronil are presently used on a very large scale (e.g., Simon-Delso et al 2014, this issue) and are highly persistent, and repeated application can lead to buildup of environmental concentrations in soils. When imidacloprid was added directly to terrestrial microcosms to simulate a soil injection method for treating trees, a similar effect was detected with significantly reduced breakdown of leaf litter by earthworms at ambient litter concentrations of 7 mg/kg and higher (Kreutzweiser et al 2008b) Taken together, these studies demonstrated that when imidacloprid is applied as a systemic insecticide for the control of wood-boring insects in trees, residual imidacloprid in autumn-shed leaves poses risk of reduced leaf litter breakdown through a feeding inhibition effect on earthworms, and this has negative implications for organic matter dynamics in soils. It is possible that community level changes associated with the neonicotinoid exposure may facilitate the adaptive responses in functional parameters listed above

Conclusions on soils as ecosystem services
Conclusions on freshwater ecosystem functions
Conclusion on risks to cultured fisheries
Conclusions on food security
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call