Abstract

This report produced by an independent Expert Group is the second commissioned by the ILSI Europe Task Force on Process-related Compounds. The first report, which reviewed human exposure and internal dose assessments of acrylamide in foods, stressed the need for comparison of added risks or reduced benefits ν. the benefit of acrylamide reduction. This second Expert Group was established to examine and report on the considerations for risk-benefit analysis of the mitigation measures on acyrylamide in commodities which contribute significantly to acrylamide exposure, and their impact on safety, quality, nutritional and organoleptic parameters; to position the relevance of the suspected side effects and to quantify their potential impact. The Expert Group was asked to focus on the impact of mitigation on exposure scenarios and the risk to human health using multidimensional risk assessment approaches. The report has four main objectives: 1. To summarise the impact of pre-harvest, post-harvest and processing conditions on acrylamide formation in potatoes, cereals and coffee. 2. To evaluate the impact of pre-harvest, post-harvest and processing conditions on the formation of acrylamide in these commodities. 3. To consider the nutritional value and beneficial health impact of consuming these commodities. 4. To calculate the impact of mitigation using probabilistic risk-benefit modelling to demonstrate the principle of this approach. Animal studies have shown that acrylamide is a genotoxic carcinogen. Under the premise that for genotoxic carcinogens no threshold levels of effect exists, exposure is to be minimized as far as possible. Minimization strategies therefore have been and consistently are developed, although direct evidence of carcinogenic effects in humans as a result of acrylamide intake is not available. The margin of exposure (MOE), representing the ratio between a defined point on the relevant dose-response curve, the bench mark dose lower limit (BMDL, 300 μg/kg body weight (bw) per day) and average (1 μg/kg bw per day) or high (4 μg/kg bw per day) consumer exposure has been estimated at 300 and 75, respectively. According to the European Food Safety Authority (EFSA) and the Joint FAO/WHO Expert Committee on Food Additives (JECFA) a MOE of ≥ 10 000 would indicate low concern, underlining that the relatively low MOE for acrylamide calls for rapid and effective mitigation measures in order to lower consumer exposure. Acrylamide production in foods is a consequence of the Maillard reaction between asparagine and reducing sugars. Therefore, factors affecting the concentration of these precursors in food, together with processing conditions during food preparation and storage will affect the final concentration of acrylamide in food. The commodities giving the highest exposure to acrylamide in the western diet are potatoes, cereals and coffee. The first two of these are staple foods providing for the majority of carbohydrate and some protein in the diet. Coffee is not an essential food, but has a high level of intake as a beverage, chosen not only for its flavour and hedonic value but also as a provider of caffeine. Acrylamide formation in foodstuffs depends on the concentrations and availability of the precursor molecules asparagine and reducing sugar(s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call