Abstract
In a railway system, maintenance activities need to be continuously performed to ensure safety and continued rail operations. In this framework, while on one hand unplanned corrective maintenance activities performed when a fault is occurred are expensive and would cause low service quality, on the other hand preventive maintenance that does not consider the actual asset condition is often unnecessary and turns out to generate avoidable costs. To deal with this issue, in this paper, a risk-based decision support system to schedule the predictive maintenance activities is proposed. In such a framework, the interventions are planned by taking into account the forecast degradation state of railway assets and performed when a given threshold is reached, thus minimizing the probability of both sudden and unnecessary operations. With the end of finding the optimal scheduling of predictive maintenance, in this paper also the space-distributed aspect of railway infrastructure is considered, defining the best path and the activities assignment for each maintenance team. The scheduling model is formulated as a Mixed Integer Linear Programming (MILP) problem aiming at based on the risk minimization, according to the ISO 55000 guidelines. A matheuristic solution approach is proposed and applied to a real rail network. The relevant results show how the proposed scheduling model can use the outputs of predictive tools and degradation models, based on data from field, to mitigate the sudden failure risk by means of a cost-effective maintenance plan at a network level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.