Abstract
The outbreak of COVID-19 brought great inconvenience to people’s daily travel. In order to provide people with a path planning scheme that takes into account both safety and travel distance, a risk aversion path planning model in urban traffic scenarios was established through reinforcement learning. We have designed a state and action space of agents in a “point-to-point” way. Moreover, we have extracted the road network model and impedance matrix through SUMO simulation, and have designed a Restricted Reinforcement Learning-Artificial Potential Field (RRL-APF) algorithm, which can optimize the Q-table initialization operation before the agent learning and the action selection strategy during learning. The greedy coefficient is dynamically adjusted through the improved greedy strategy. Finally, according to different scenarios, our algorithm is verified by the road network model and epidemic historical data in the surrounding areas of Xinfadi, Beijing, China, and comparisons are made with common Q-Learning, the Sarsa algorithm and the artificial potential field-based reinforcement learning (RLAFP) algorithm. The results indicate that our algorithm improves convergence speed by 35% on average and the travel distance is reduced by 4.3% on average, while avoiding risk areas, compared with the other three algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.