Abstract

The outbreak of COVID-19 brought great inconvenience to people’s daily travel. In order to provide people with a path planning scheme that takes into account both safety and travel distance, a risk aversion path planning model in urban traffic scenarios was established through reinforcement learning. We have designed a state and action space of agents in a “point-to-point” way. Moreover, we have extracted the road network model and impedance matrix through SUMO simulation, and have designed a Restricted Reinforcement Learning-Artificial Potential Field (RRL-APF) algorithm, which can optimize the Q-table initialization operation before the agent learning and the action selection strategy during learning. The greedy coefficient is dynamically adjusted through the improved greedy strategy. Finally, according to different scenarios, our algorithm is verified by the road network model and epidemic historical data in the surrounding areas of Xinfadi, Beijing, China, and comparisons are made with common Q-Learning, the Sarsa algorithm and the artificial potential field-based reinforcement learning (RLAFP) algorithm. The results indicate that our algorithm improves convergence speed by 35% on average and the travel distance is reduced by 4.3% on average, while avoiding risk areas, compared with the other three algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call