Abstract
ABSTRACT This paper develops a coupled model for day-ahead electricity prices and average daily temperature which allows to model quanto weather and energy derivatives. These products have gained on popularity as they enable to hedge against both volumetric and price risks. Electricity day-ahead prices and average daily temperatures are modelled through nonhomogeneous Ornstein–Uhlenbeck processes driven by a Brownian motion and a Normal Inverse Gaussian Lévy process, which allows to include dependence between them. A Conditional Least Square method is developed to estimate the different parameters of the model and used on real data. Then explicit and semi-explicit formulas are obtained for derivatives including quanto options and compared with Monte Carlo simulations. Last, we develop explicit formulas to hedge statically single- and double-sided quanto options by a portfolio of electricity options and temperature options (CDD or HDD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.