Abstract

Hemodynamically significant patent ductus arteriosus (hsPDA) is associated with increased comorbidities in neonates. Early evaluation of hsPDA risk is critical to implement individualized intervention. The aim of the study was to provide a powerful reference for the early identification of high-risk hsPDA population and early treatment decisions. We enrolled infants who were diagnosed with PDA and performed exome sequencing. The collapsing analyses were used to find the risk gene set (RGS) of hsPDA for model construction. The credibility of RGS was proven by RNA sequencing. Multivariate logistic regression was performed to establish models combining clinical and genetic features. The models were evaluated by area under the receiver operating curve (AUC) and decision curve analysis (DCA). In this retrospective cohort study of 2199 PDA patients, 549 (25.0%) infants were diagnosed with hsPDA. The model [all clinical characteristics selected by least absolute shrinkage and selection operator regression (all CCs)] based on six clinical variables was acquired within three days of life, including gestational age (GA), respiratory distress syndrome (RDS), the lowest platelet count, invasive mechanical ventilation, and positive inotropic and vasoactive drugs. It has an AUC of 0.790 [95% confidence interval (CI) = 0.749-0.832], while the simplified model (basic clinical characteristic model) including GA and RDS has an AUC of 0.753 (95% CI = 0.706-0.799). There was a certain consistency between RGS and differentially expressed genes of the ductus arteriosus in mice. The AUC of the models was improved by RGS, and the improvement was significant (all CCs vs. all CCs + RGS: 0.790 vs. 0.817, P < 0.001). DCA demonstrated that all models were clinically useful. Models based on clinical factors were developed to accurately stratify the risk of hsPDA in the first three days of life. Genetic features might further improve the model performance. Video Abstract (MP4 86834kb).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.