Abstract

We consider the problem of finding (Pareto-)optimal allocations of risk among finitely many agents. The associated individual risk measures are law-invariant, but with respect to agent-dependent and potentially heterogeneous reference probability measures. Moreover, we assume that the individual risk assessments are consistent with the respective second-order stochastic dominance relations, but remain agnostic about their convexity. A simple sufficient condition for the existence of Pareto optima is provided. The proof combines local comonotonic improvement with a Dieudonné-type argument, which also establishes a link of the optimal allocation problem to the realm of “collapse to the mean” results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.