Abstract

This paper investigates the finite horizon risk-sensitive portfolio optimization in a regime-switching credit market with physical and information-induced default contagion. It is assumed that the underlying regime-switching process has countable states and is unobservable. The stochastic control problem is formulated under partial observations of asset prices and sequential default events. By establishing a martingale representation theorem based on incomplete and phasing out filtration, we connect the control problem to a quadratic BSDE with jumps, in which the driver term is nonstandard and carries the conditional filter as an infinite-dimensional parameter. By proposing some truncation techniques and proving uniform a priori estimates, we obtain the existence of a solution to the BSDE using the convergence of solutions associated to some truncated BSDEs. The verification theorem can be concluded with the aid of our BSDE results, which in turn yields the uniqueness of the solution to the BSDE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.