Abstract
In many revenue management applications risk-averse decision-making is crucial. In dynamic settings, however, it is challenging to find the right balance between maximizing expected rewards and minimizing various kinds of risk. In existing approaches utility functions, chance constraints, or (conditional) value at risk considerations are used to influence the distribution of rewards in a preferred way. Nevertheless, common techniques are not flexible enough and typically numerically complex. In our model, we exploit the fact that a distribution is characterized by its mean and higher moments. We present a multi-valued dynamic programming heuristic to compute risk-sensitive feedback policies that are able to directly control the moments of future rewards. Our approach is based on recursive formulations of higher moments and does not require an extension of the state space. Finally, we propose a self-tuning algorithm, which allows to identify feedback policies that approximate predetermined (risk-sensitive) target distributions. We illustrate the effectiveness and the flexibility of our approach for different dynamic pricing scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.