Abstract
The present work takes place in the framework of a non-expected utility model under risk: the RDEU theory (Rank Dependent Expected Utility, first initiated by Quiggin under the denomination of Anticipated Utility), where the decision maker's behavior is characterized by two functionsu andf. Our first result gives a condition under which the functionu characterizes the decision maker's attitude towards wealth. Then, defining a decision maker as risk averter (respectively risk seeker) when he always prefers to any random variable its expected value (weak definition of risk aversion), the second result states that a decision maker who has an increasing marginal utility of wealth (a convex functionu) can be risk averse, if his functionf is“sufficiently below” his functionu, hence if he is sufficiently“pessimistic.” Obviously, he can also be risk seeking with a diminishing marginal utility of wealth. This result is noteworthy because with a stronger definition of risk aversion/risk seeking, based on mean-preserving spreads, Chew, Karni, and Safra have shown that the only way to be risk averse (in their sense) in RDEU theory is to have, simultaneously, a concave functionu and a convex functionf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.