Abstract

As college counseling centers struggle to meet the growing demands of behavioral health services, digital mental health tools like smartphone apps offer a scalable solution to increase access to care. However, clinicians report greater time demands and uncertainty over how to act upon digital data. In this paper, by using established statistical techniques, we condense complex smartphone data into results that are quickly understood and clinically meaningful. Specifically, we show how smartphone digital phenotyping data collected by college students can be used to predict an individual’s anxiety and depression level on a daily or weekly basis with an error of less than 10%. These predictions are then condensed into a 1 to 5 scale with a 1 representing patients with the lowest risk of presenting high anxiety or depression, and a 5 representing the patients with the highest risk. If used in a clinical setting, these risk scores have the potential to help college counseling centers monitor symptom severity in real-time via students’ own smartphones, allocate resources more efficiently, and ensure that students are receiving the appropriate level of treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.