Abstract

Bridges are essential infrastructure of the transportation network. Therefore, maintenance tasks are mandatory to prevent these structures from degradation over time. In practice, funding availability for maintenance projects is often confined and this necessitates prioritization of different bridges that are in need of remedial activities. The writers aim to construct an artificial intelligence (AI) approach, evolutionary fuzzy least-squares support-vector machine (LSSVM) inference model (EFLSIM), for prioritizing bridges based on risk scores (RSs). In EFLSIM, fuzzy logic (FL) is utilized to enhance the capability of approximate reasoning and to deal with subjective information, which is obtained from human judgment. The inference model employs LSSVM as a supervised learning technique to infer the fuzzy input-output mapping relationship. Differential evolution (DE) is integrated into the model to optimize its tuning parameters. Experimental results and comparison illustrates that EFLSIM can successfully absorb and simulate human knowledge in the bridge-assessment process. Additionally, the newly built model has outperformed other benchmark approaches in terms of both reliability and accuracy. A 10-fold cross-validation process has demonstrated that the EFLSIM has achieved more than 38% reduction in RMS error compared to other benchmark methods. Thus, the proposed AI approach is a promising tool to support decision-makers in bridge-maintenance planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.