Abstract
SummaryEmpirical Bayes techniques for normal theory shrinkage estimation are extended to generalized linear models in a manner retaining the original spirit of shrinkage estimation, which is to reduce risk. The investigation identifies two classes of simple, all-purpose prior distributions, which supplement such non-informative priors as Jeffreys's prior with mechanisms for risk reduction. One new class of priors is motivated as optimizers of a core component of asymptotic risk. The methodology is evaluated in a numerical exploration and application to an existing data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.