Abstract

PurposeIn the cold supply chain (SC), effective risk management is regarded as an essential component to address the risky and uncertain SC environment in handling time- and temperature-sensitive products. However, existing multi-criteria decision-making (MCDM) approaches greatly rely on expert opinions for pairwise comparisons. Despite the fact that machine learning models can be customised to conduct pairwise comparisons, it is difficult for small and medium enterprises (SMEs) to intelligently measure the ratings between risk criteria without sufficiently large datasets. Therefore, this paper aims at developing an enterprise-wide solution to identify and assess cold chain risks.Design/methodology/approachA novel federated learning (FL)-enabled multi-criteria risk evaluation system (FMRES) is proposed, which integrates FL and the best–worst method (BWM) to measure firm-level cold chain risks under the suggested risk hierarchical structure. The factors of technologies and equipment, operations, external environment, and personnel and organisation are considered. Furthermore, a case analysis of an e-grocery SC in Australia is conducted to examine the feasibility of the proposed approach.FindingsThroughout this study, it is found that embedding the FL mechanism into the MCDM process is effective in acquiring knowledge of pairwise comparisons from experts. A trusted federation in a cold chain network is therefore formulated to identify and assess cold SC risks in a systematic manner.Originality/valueA novel hybridisation between horizontal FL and MCDM process is explored, which enhances the autonomy of the MCDM approaches to evaluate cold chain risks under the structured hierarchy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.