Abstract

To develop a prediction equation for 10-year risk of a combined endpoint (incident coronary heart disease, stroke, heart failure, chronic kidney disease, lower extremity hospitalizations) in people with diabetes, using demographic and clinical information, and a panel of traditional and non-traditional biomarkers. We included in the study 654 participants in the Atherosclerosis Risk in Communities (ARIC) study, a prospective cohort study, with diagnosed diabetes (visit 2; 1990-1992). Models included self-reported variables (Model 1), clinical measurements (Model 2), and glycated haemoglobin (Model 3). Model 4 tested the addition of 12 blood-based biomarkers. We compared models using prediction and discrimination statistics. Successive stages of model development improved risk prediction. The C-statistics (95% confidence intervals) of models 1, 2, and 3 were 0.667 (0.64, 0.70), 0.683 (0.65, 0.71), and 0.694 (0.66, 0.72), respectively (p < 0.05 for differences). The addition of three traditional and non-traditional biomarkers [β-2 microglobulin, creatinine-based estimated glomerular filtration rate (eGFR), and cystatin C-based eGFR] to Model 3 significantly improved discrimination (C-statistic = 0.716; p = 0.003) and accuracy of 10-year risk prediction for major complications in people with diabetes (midpoint percentiles of lowest and highest deciles of predicted risk changed from 18-68% to 12-87%). These biomarkers, particularly those of kidney filtration, may help distinguish between people at low versus high risk of long-term major complications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.