Abstract

Cognitive abilities tend to decline with aging, with variation between individuals, and many studies seek to identify genetic biomarkers that more accurately anticipate risks related to pathological aging. We investigated the influence of BDNF, NTRK2, and FNDC5 single nucleotide polymorphisms (SNPs) on the cognitive performance of young and older adults with contrasting educational backgrounds. We addressed three questions: (1) Is education associated with reduced age-related cognitive decline? (2) Does the presence of SNPs explain the variation in cognitive performance observed late in life? (3) Is education differentially associated with cognition based on the presence of BDNF, NTRK2, or FNDC5 polymorphisms? We measured the cognitive functions of young and older participants, with lower and higher education, using specific and sensitive tests of the Cambridge Automated Neuropsychological Test Assessment Battery. A three-way ANOVA revealed that SNPs were associated with differential performances in executive functions, episodic memory, sustained attention, mental and motor response speed, and visual recognition memory and that higher educational levels improved the affected cognitive functions. The results revealed that distinct SNPs affect cognition late in life differentially, suggesting their utility as potential biomarkers and emphasizing the importance of cognitive stimulation that advanced education early in life provides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call