Abstract

BackgroundUnderstanding the factors that influence the foraging behavior and perception of habitat quality by animals has long been the focus in ecology. Due to the direct effect resource acquisition has on an individual’s fitness and species’ survival, predation risk is considered widely to be a major driver of foraging decision. The objectives of this study were to investigate how predation risk is perceived by granivorous bird species with respect to different habitat and microhabitat types, time of day and food types in Amurum Forest Reserve, Nigeria, with a view to direct future conservation planning.MethodsFor 3 months, we conducted field experiments to measure giving-up densities (GUD, the amount of food left behind in artificial patches after birds cease to forage in it) and how it differs with habitat types, microhabitats, times of day, and food types. General linear mixed-effect models (GLMMs) were fitted to investigate the differences in GUD with respect to the aforementioned variables. Model selection was done based on the Akaike’s Information Criterion (AIC).ResultsThere was no significant difference in GUDs across habitats. However, there was a significant difference in GUDs between microhabitats. Higher food remnants were recorded in the open than in cover microhabitats, as birds exploited food patches in the cover more. Time of day influenced foraging behavior in the birds. They foraged more in the morning than afternoon across all three habitats except for the gallery forest where birds foraged less in the morning. Higher GUDs were recorded in open than cover microhabitats both in the morning and the afternoon. Birds had a preference for rice, millet, and groundnut respectively.ConclusionThe differences in GUDs were very indicative of differences in foraging behavior and perception of resource availability in response to perceived predation risk. Therefore, this study suggests that the understanding of foraging decisions can be a veritable method for assessing habitat quality as perceived by animals.

Highlights

  • Understanding the factors that influence the foraging behavior and perception of habitat quality by animals has long been the focus in ecology

  • Predation and habitat quality The higher giving-up densities (GUD) in the open than the cover microhabitat in all three habitats (Fig. 3) support the idea that predation risk is higher in the open than in cover and that vegetation serves as a shelter from predators (Lomas et al 2014)

  • The presence of lurking ground predators like snakes often observed in the Amurum Forest Reserve is a predominant feature in the tropics (Tobias et al 2013). Whereas these areas offer cover from avian predators, they could potentially be perceived as risky as that by snakes. This pattern concurs with many studies that have found support for a high GUD resulting from increased predation risk (Brown and Kotler 2004; Eccard et al 2008) and reduced foraging activity in risky or open areas (Shochat et al 2004; Cresswell 2008)

Read more

Summary

Introduction

Understanding the factors that influence the foraging behavior and perception of habitat quality by animals has long been the focus in ecology. Due to the direct effect resource acquisition has on an individual’s fitness and species’ survival, predation risk is considered widely to be a major driver of foraging decision. To maximize fitness, individuals have to be capable of accurately assessing the local risks of predation and engage in foraging behaviors that optimize energy intake (Kamil et al 2012). Largely engaging in foraging behaviors that maximize energy intake while reducing predation risk. Animals’ perception of habitat quality is much more than just predation risk. Other factors such as food availability, energy expenditure, and competition combine to define habitat quality for species as well as individuals. Foraging behavior often indicates a strong linkage to habitat conditions as perceived by the foraging animal (Wilmers et al 2015)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.