Abstract

BackgroundGlucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency state in humans. The clinical phenotype is variable and includes asymptomatic individuals, episodic hemolysis induced by oxidative stress, and chronic hemolysis. G6PD deficiency is common in malaria-endemic regions, an observation hypothesized to be due to balancing selection at the G6PD locus driven by malaria. G6PD deficiency increases risk of severe malarial anemia, a key determinant of invasive bacterial disease in malaria-endemic settings. The pneumococcus is a leading cause of invasive bacterial infection and death in African children. The effect of G6PD deficiency on risk of pneumococcal disease is undefined. We hypothesized that G6PD deficiency increases pneumococcal disease risk and that this effect is dependent upon malaria.MethodsWe performed a genetic case-control study of pneumococcal bacteremia in Kenyan children stratified across a period of falling malaria transmission between 1998 and 2010.ResultsFour hundred twenty-nine Kenyan children with pneumococcal bacteremia and 2677 control children were included in the study. Among control children, G6PD deficiency, secondary to the rs1050828 G>A mutation, was common, with 11.2% (n = 301 of 2677) being hemi- or homozygotes and 33.3% (n = 442 of 1329) of girls being heterozygotes. We found that G6PD deficiency increased the risk of pneumococcal bacteremia, but only during a period of high malaria transmission (P = 0.014; OR 2.33, 95% CI 1.19–4.57). We estimate that the population attributable fraction of G6PD deficiency on risk of pneumococcal bacteremia in areas under high malaria transmission is 0.129.ConclusionsOur data demonstrate that G6PD deficiency increases risk of pneumococcal bacteremia in a manner dependent on malaria. At the population level, the impact of G6PD deficiency on invasive pneumococcal disease risk in malaria-endemic regions is substantial. Our study highlights the infection-associated morbidity and mortality conferred by G6PD deficiency in malaria-endemic settings and adds to our understanding of the potential indirect health benefits of improved malaria control.

Highlights

  • Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency state in humans

  • Our data demonstrate that G6PD deficiency increases risk of pneumococcal bacteremia in a manner dependent on malaria

  • Our study highlights the infection-associated morbidity and mortality conferred by G6PD deficiency in malaria-endemic settings and adds to our understanding of the potential indirect health benefits of improved malaria control

Read more

Summary

Introduction

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency state in humans. G6PD deficiency can cause a wide spectrum of clinical disease, the severity of which is dependent on the level of residual enzyme activity. G6PD A− is a WHO class 3 G6PD deficiency variant [5], predicted to result in only mild-to-moderate enzymatic deficiency (10–60% of normal). This genetic variant of G6PD deficiency is estimated to account for 85% of phenotypic variation in G6PD enzymatic activity in coastal Kenyan populations [4]. Rs1050829 is a WHO class 4 G6PD deficiency variant, predicted to result in a clinically asymptomatic decrease in G6PD enzymatic activity (< 40% reduction from wild type). Variation at rs1050829 does not affect residual enzymatic activity in individuals with G6PD deficiency secondary to the G6PD A− variant in African populations, as the G6PD A− variant is always inherited on a rs1050829:C background [4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.