Abstract

Epidemiological data suggest that obesity increases the risk of colorectal cancer in humans. Given that diet-induced obesity mouse models verified the epidemiological data, the present study aimed to determine whether obese C57BL/6J-Lep(ob) male mice (a different obesity in vivo model) were at greater risk of colonic cancer than their lean male littermates. Risk of colonic tumorigenesis was assessed by numbers of aberrant crypts, aberrant crypt foci and colonic tumors. Proliferation of the colonic epithelia was assessed histochemically following administration of BrdU. Availability of the procarcinogen, azoxymethane (AOM) to target tissues was assessed by quantifying via HPLC plasma AOM concentrations during the 60 min period following AOM injection. When obese and lean mice were injected with azoxymethane (AOM) at doses calculated to provide equivalent AOM levels per kg lean body mass, obese animals had significantly fewer aberrant crypts/colon and fewer aberrant crypt foci/colon than the lean animals. Tumors were identified in the colonic mucosa of lean (4 tumors in 14 mice) but not obese (0 tumors in 15 mice) mice. Colonic cell proliferation was not significantly different for obese and lean mice. Because these results were unexpected, plasma AOM concentrations were measured and were found to be lower in the obese than lean mice. When plasma AOM levels were comparable for the lean and obese mice, the Lep(ob) mice continued to have significantly fewer aberrant crypt foci/colon than the lean mice, but differences were not statistically different for aberrant crypts/colon. Interestingly, obese Lep(ob) mice did not exhibit increased risk of colonic cancer as expected. Instead, Lep(ob) mice exhibited equivalent or lower risk of colon cancer when compared to the lean group. These results taken together with in vivo results from diet-induced obesity studies, imply that leptin may be responsible for the increased risk of colon cancer associated with obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call